Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Cells ; 13(6)2024 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-38534372

RESUMEN

Heat shock protein 47 (HSP47), also known as SERPINH1, functions as a collagen-specific molecular chaperone protein essential for the formation and stabilization of the collagen triple helix. Here, we delved into the regulatory pathways governed by HSP47, shedding light on collagen homeostasis. Our investigation revealed a significant reduction in HSP47 mRNA levels in the skin tissue of older mice as compared to their younger counterparts. The augmented expression of HSP47 employing lentivirus infection in fibroblasts resulted in an increased secretion of type I collagen. Intriguingly, the elevated expression of HSP47 in fibroblasts correlated with increased protein and mRNA levels of type I collagen. The exposure of fibroblasts to IRE1α RNase inhibitors resulted in the reduced manifestation of HSP47-induced type I collagen secretion and expression. Notably, HSP47-overexpressing fibroblasts exhibited increased XBP1 mRNA splicing. The overexpression of HSP47 or spliced XBP1 facilitated the nuclear translocation of ß-catenin and transactivated a reporter harboring TCF binding sites on the promoter. Furthermore, the overexpression of HSP47 or spliced XBP1 or the augmentation of nuclear ß-catenin through Wnt3a induced the expression of type I collagen. Our findings substantiate that HSP47 enhances type I collagen expression and secretion in fibroblasts by orchestrating a mechanism that involves an increase in nuclear ß-catenin through IRE1α activation and XBP1 splicing. This study therefore presents potential avenues for an anti-skin-aging strategy targeting HSP47-mediated processes.


Asunto(s)
Colágeno Tipo I , Proteínas del Choque Térmico HSP47 , Ratones , Animales , Colágeno Tipo I/metabolismo , Proteínas del Choque Térmico HSP47/química , Proteínas del Choque Térmico HSP47/genética , Proteínas del Choque Térmico HSP47/metabolismo , Endorribonucleasas/metabolismo , beta Catenina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Colágeno/metabolismo , Fibroblastos/metabolismo , ARN Mensajero/metabolismo
2.
Nat Commun ; 14(1): 7319, 2023 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-37951979

RESUMEN

Adiposity varies among individuals with the influence of diverse physiological, pathological, environmental, hormonal, and genetic factors, but a unified molecular basis remains elusive. Here, we identify HSP47, a collagen-specific chaperone, as a key determinant of body adiposity. HSP47 expression is abundant in adipose tissue; increased with feeding, overeating, and obesity; decreased with fasting, exercise, calorie restriction, bariatric surgery, and cachexia; and correlated with fat mass, BMI, waist, and hip circumferences. Insulin and glucocorticoids, respectively, up- and down-regulate HSP47 expression. In humans, the increase of HSP47 gene expression by its intron or synonymous variants is associated with higher body adiposity traits. In mice, the adipose-specific knockout or pharmacological inhibition of HSP47 leads to lower body adiposity compared to the control. Mechanistically, HSP47 promotes collagen dynamics in the folding, secretion, and interaction with integrin, which activates FAK signaling and preserves PPARγ protein from proteasomal degradation, partly related to MDM2. The study highlights the significance of HSP47 in determining the amount of body fat individually and under various circumstances.


Asunto(s)
Adiposidad , Proteínas del Choque Térmico HSP47 , Animales , Humanos , Ratones , Colágeno/metabolismo , Proteínas del Choque Térmico HSP47/genética , Chaperonas Moleculares/metabolismo , Obesidad/genética
3.
J Mol Cell Cardiol ; 185: 1-12, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37839656

RESUMEN

We recently described a subgroup of autopsied COVID-19 subjects (∼40%), termed 'profibrotic phenotype,' who exhibited clusters of myofibroblasts (Mfbs), which were positive for the collagen-specific chaperone heat shock protein 47 (HSP47+) in situ. This report identifies increased, localized (hot spot restricted) expression of αSMA, COLα1, POSTN and FAP supporting the identity of HSP47+ cells as myofibroblasts and characterizing a profibrotic extracellular matrix (ECM) phenotype. Coupled with increased GRP78 in COVID-19 subjects, these data could reflect induction of the unfolded protein response for mitigation of proteostasis (i.e., protein homeostasis) dysfunction in discrete clusters of cells. ECM shifts in selected COVID-19 subjects occur without significant increases in either global trichrome positive staining or myocardial injury based quantitively on standard H&E scoring. Our findings also suggest distinct mechanism(s) for ECM remodeling in the setting of SARS-CoV-2 infection. The ratio of CD163+/CD68+ cells is increased in hot spots of profibrotic hearts compared with either controls or outside of hot spots in COVID-19 subjects. In sum, matrix remodeling of human COVID-19 hearts in situ is characterized by site-restricted profibrotic mediated (e.g., HSP47+ Mfbs, CD163+ Mφs) modifications in ECM (i.e., COLα1, POSTN, FAP), with a strong correlation between COLα1 and HSP47+cells within hot spots. Given the established associations of viral infection (e.g., human immunodeficiency virus; HIV), myocardial fibrosis and sudden cardiac death, early screening tools (e.g., plasma biomarkers, noninvasive cardiac magnetic resonance imaging) for diagnosis, monitoring and treatment of fibrotic ECM remodeling are warranted for COVID-19 high-risk populations.


Asunto(s)
COVID-19 , Miofibroblastos , Humanos , Miofibroblastos/metabolismo , COVID-19/patología , SARS-CoV-2 , Corazón , Proteínas del Choque Térmico HSP47/genética , Proteínas del Choque Térmico HSP47/metabolismo , Fibrosis
4.
J Oral Pathol Med ; 52(7): 601-609, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37247331

RESUMEN

BACKGROUND: The expression of heat-shock protein 47 (HSP47) has been linked to collagen synthesis control and implicated in fibrotic disorders, but more recent studies have demonstrated its role in solid tumors. In this study, we explored the prognostic impact of HSP47 in oral squamous cell carcinomas (OSCC) and determined the in vitro effects of its loss-of-function on viability, proliferation, migration, invasion, and resistance to cisplatin of OSCC cells. METHODS: The HSP47 expression in tumor samples was assessed by immunohistochemistry in two independent cohorts totaling 339 patients with OSCC, and protein levels were associated with clinicopathological features and survival outcomes. The OSCC cell lines HSC3 and SCC9 were transduced with lentivirus expressing short hairpin RNA to stably silence HSP47 and used in assays to measure cellular viability, proliferation, migration, and invasion. RESULTS: HSP47 was overexpressed in OSCC samples, and its overexpression was significantly and independently associated with poor disease-specific survival and shortened disease-free survival in both OSCC cohorts. The knockdown of HSP47 showed no effects on cell viability or cisplatin sensitivity, but impaired significantly proliferation, migration, and invasion of OSCC cells, with stronger effects on SCC9 cells. CONCLUSION: Our results show a significant prognostic impact of HSP47 overexpression in OSCC and reveal that HSP47 inhibition impairs the proliferation, migration, and invasion of OSCC cells. HSP47 may represent a potential therapeutic target for OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas de Cabeza y Cuello , Proteínas del Choque Térmico HSP47/genética , Proteínas del Choque Térmico HSP47/metabolismo , Neoplasias de la Boca/patología , Cisplatino/farmacología , Línea Celular Tumoral , Proliferación Celular/genética , Movimiento Celular/genética
5.
Liver Int ; 43(2): 500-512, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36371672

RESUMEN

BACKGROUND: Biglycan (BGN) is a small leucine-rich proteoglycan that participates in the production of excess extracellular matrix (ECM) and is related to fibrosis in many organs. However, the role of BGN in liver fibrosis remains poorly understood. This study aimed to investigate the role and mechanism of BGN in liver fibrosis. METHODS: Human liver samples, Bgn-/0 (BGN KO) mice and a human LX-2 hepatic stellate cells (HSCs) model were applied for the study of experimental fibrosis. GEO data and single-cell RNA-seq data of human liver tissue were analysed as a bioinformatic approach. Coimmunoprecipitation, immunofluorescence staining, western blotting and qRT-PCR were conducted to identify the regulatory effects of BGN on heat shock protein 47 (HSP47) expression and liver fibrosis. RESULTS: We observed that hepatic BGN expression was significantly increased in patients with fibrosis and in a mouse model of liver fibrosis. Genetic deletion of BGN disrupted TGF-ß1 pathway signalling and alleviated liver fibrosis in mice administered carbon tetrachloride (CCl4 ). siRNA-mediated knockdown of BGN significantly reduced TGF-ß1-induced ECM deposition and fibroblastic activation in LX-2 cells. Mechanistically, BGN directly interacted with and positively regulated the collagen synthesis chaperon protein HSP47. Rescue experiments showed that BGN promoted hepatic fibrosis by regulating ECM deposition and HSC activation by positively regulating HSP47. CONCLUSION: Our data indicate that BGN promotes hepatic fibrosis by regulating ECM deposition and HSC activation through an HSP47-dependent mechanism. BGN may be a new biomarker of hepatic fibrosis and a novel target for disease prevention and treatment.


Asunto(s)
Biglicano , Proteínas del Choque Térmico HSP47 , Cirrosis Hepática , Animales , Humanos , Ratones , Biglicano/metabolismo , Fibrosis , Proteínas del Choque Térmico HSP47/genética , Proteínas del Choque Térmico HSP47/metabolismo , Cirrosis Hepática/metabolismo , Factor de Crecimiento Transformador beta1/efectos adversos , Factor de Crecimiento Transformador beta1/metabolismo
6.
Medicine (Baltimore) ; 101(45): e31418, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36397358

RESUMEN

Glioblastoma (GBM) is a malignant tumor. The long-term prognosis of the patients is poor. Therefore, it is of important clinical value to further explore the pathogenesis and look for molecular markers for early diagnosis and targeted treatment. Two expression profiling datasets [GSE50161 (GPL570 platform), GSE116520 (GPL10558 platform)] were respectively downloaded from the gene expression omnibus database. Volcano diagrams show the Differently expressed genes (DEGs) of GSE50161 and GSE116520. A Venn diagram revealed 467 common DEGs between the 2 datasets. Lysyl oxidase (LOX), serpin family H member 1 (SERPINH1) and transforming growth factor beta induced (TGFBI) were negatively correlated with the overall survival rate in patients with GBM. The hub genes are high in GBM tumor tissues. The relative expression levels of LOX, SERPINH1 and TGFBI were significantly higher in GBM samples, compared with the normal brain tissues groups. Bioinformatics technology could be a useful tool to predict progression of GBM and to explore the mechanism of GBM.LOX, SERPINH1 and TGFBI may be involved in the mechanism of the occurrence and development of GBM, and may be used as molecular targets for early diagnosis and specific treatment. DEGs identified using GEO2R. Functional annotation of DEGs using Kyoto Encyclopedia of Genes and Genomes and gene body pathway enrichment analysis. Construction of a protein-protein interaction network. The pathway and process enrichment analysis of the hub genes were performed by Metascape. Survival analysis was performed in gene expression profiling interactive analysis. Real-time fluorescent quantitative polymerase chain reaction assay was performed to verify. The animal model was established for western blot test analysis.


Asunto(s)
Glioblastoma , Humanos , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Glioblastoma/patología , Proteínas del Choque Térmico HSP47/genética , Proteínas del Choque Térmico HSP47/metabolismo , Proteína-Lisina 6-Oxidasa/genética , Proteína-Lisina 6-Oxidasa/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
7.
Elife ; 112022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36193675

RESUMEN

Trans-differentiation of hepatic stellate cells (HSCs) to activated state potentiates liver fibrosis through release of extracellular matrix (ECM) components, distorting the liver architecture. Since limited antifibrotics are available, pharmacological intervention targeting activated HSCs may be considered for therapy. A-kinase anchoring protein 12 (AKAP12) is a scaffolding protein that directs protein kinases A/C (PKA/PKC) and cyclins to specific locations spatiotemporally controlling their biological effects. It has been shown that AKAP12's scaffolding functions are altered by phosphorylation. In previously published work, observed an association between AKAP12 phosphorylation and HSC activation. In this work, we demonstrate that AKAP12's scaffolding activity toward the endoplasmic reticulum (ER)-resident collagen chaperone, heat-shock protein 47 (HSP47) is strongly inhibited by AKAP12's site-specific phosphorylation in activated HSCs. CRISPR-directed gene editing of AKAP12's phospho-sites restores its scaffolding toward HSP47, inhibiting HSP47's collagen maturation functions, and HSC activation. AKAP12 phospho-editing dramatically inhibits fibrosis, ER stress response, HSC inflammatory signaling, and liver injury in mice. Our overall findings suggest a pro-fibrogenic role of AKAP12 phosphorylation that may be targeted for therapeutic intervention in liver fibrosis.


Asunto(s)
Proteínas de Anclaje a la Quinasa A , Células Estrelladas Hepáticas , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Animales , Proteínas de Ciclo Celular , Colágeno/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ciclinas/metabolismo , Modelos Animales de Enfermedad , Fibrosis , Proteínas del Choque Térmico HSP47/genética , Proteínas del Choque Térmico HSP47/metabolismo , Hígado/metabolismo , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Ratones , Fosforilación , Proteína Quinasa C/metabolismo
8.
Exp Eye Res ; 225: 109275, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36206860

RESUMEN

Members of the microRNA-29 (miR-29) gene family have been implicated as suppressors of collagen in several human diseases. The present study aimed to explore the function of miR-29a in human fetal scleral fibroblasts (HFSFs) and to investigate potential mechanisms by which the molecule regulates cellular functioning. First, HFSFs were transfected with miR-29a mimic, miR-29a inhibitor, or their corresponding controls. Then, cell proliferation and apoptosis were assessed using a CCK-8 assay and flow cytometry, respectively. Further, using real-time PCR, western blotting, and immunofluorescence staining, levels of miR-29a, heat shock protein 47 (Hsp47), COL1A1, Smad3, P-Smad3, Bax, and Bcl-2 were investigated. Next, empty vectors and SERPINH1-overexpressing vectors were used to transfect HFSFs. Western blotting and flow cytometry were performed to assess changes in levels of HFSF protein expression and apoptosis, respectively. Results indicated that the miR-29a mimic significantly inhibited Hsp47, Smad3, P-Smad3, and COL1A1 expression. Conversely, the miR-29a inhibitor enhanced the expression of the same genes. Furthermore, miR-29a overexpression inhibited HFSFs proliferation and enhanced the rate of HFSFs apoptosis. Consistent with this finding, miR-29a overexpression led to the downregulation of Bcl-2 and upregulation of Bax. In contrast, miR-29a suppression led to the upregulation of Bcl-2 and downregulation of Bax expression and reduced the rate of apoptosis. Additional research revealed that overexpression of Hsp47 prevented HFSFs apoptosis and enhanced collagen production. Findings that miR-29a overexpression reduces collagen expression levels, slows proliferation, and promotes apoptosis in HFSFs highlight the key role of miR-29a in scleral remodeling. The effects of miR-29a on scleral remodeling might mediate by targeting Hsp47 and repressing the Smad3 pathway.


Asunto(s)
Proteínas del Choque Térmico HSP47 , MicroARNs , Humanos , Proteínas del Choque Térmico HSP47/genética , Proteínas del Choque Térmico HSP47/metabolismo , Proteína X Asociada a bcl-2/metabolismo , MicroARNs/metabolismo , Apoptosis/genética , Fibroblastos/metabolismo , Proliferación Celular , Transducción de Señal , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Colágeno/metabolismo , Proteína smad3/genética , Proteína smad3/metabolismo
9.
Clin Transl Med ; 12(7): e994, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35876041

RESUMEN

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is a common malignant tumour of the urinary tract. The major causes of poor prognosis are the lack of early diagnosis and metastasis. Accumulating research reveals that circular RNAs (circRNAs) can play key roles in the development and the progression of cancer. However, the role of circRNAs in ccRCC is still uncertain. METHODS: The circRNAs microarray (n = 4) was performed to investigate the circRNAs with differential expression in ccRCC tissues. The candidate circRNA was selected based on the cut-off criteria, such as circRNA expression abundance, circRNA size and the design of divergent primers. The circ-transportin-3 (TNPO3) levels in ccRCC tissues were tested by quantitative real-time (qRT)-PCR (n = 110). The characteristics and subcellular localization of circ-TNPO3 were identified via RNase R assay, qRT-PCR and fluorescence in situ hybridization (FISH). Then, we explored the biological roles of circ-TNPO3 in ccRCC via the function experiments in vitro and in vivo. RNA pull-down, RNA immunoprecipitation, bioinformatic analysis, RNA-FISH assays and rescue assays were applied to validate the interactions between circ-TNPO3, insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) and serpin family H member 1 (SERPINH1) to uncover the underlying molecular mechanisms of circ-TNPO3. RESULTS: We detected the obvious downregulation of circ-TNPO3 in ccRCC compared to matched adjacent normal tissues (n = 110). The lower circ-TNPO3 expression was found in ccRCC patients with distant metastasis, higher World Health Organization/International Society of Urologic Pathologists (WHO/ISUP) grade and more advanced tumour T stage. In vitro and in vivo, circ-TNPO3 significantly suppressed the proliferation and migration of ccRCC cells. Mechanistically, we elucidated that circ-TNPO3 directly bound to IGF2BP2 protein and then destabilized SERPINH1 mRNA. Moreover, IGF2BP2/SERPINH1 axis was responsible for circ-TNPO3's function of inhibiting ccRCC metastasis. Epithelial splicing regulatory protein 1 (ESRP1) was probably involved in the biogenesis of circ-TNPO3. CONCLUSIONS: Circ-TNPO3 can suppress ccRCC progression and metastasis via directly binding to IGF2BP2 protein and destabilizing SERPINH1 mRNA. Circ-TNPO3 may act as a potential target for ccRCC treatment.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Proteínas del Choque Térmico HSP47/genética , Proteínas del Choque Térmico HSP47/metabolismo , Humanos , Hibridación Fluorescente in Situ , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , ARN , ARN Circular/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , beta Carioferinas/genética , beta Carioferinas/metabolismo
10.
Sci Rep ; 12(1): 10966, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35768471

RESUMEN

Crohn's disease (CD) and ulcerative colitis (UC) are chronic inflammatory disorders of the gastrointestinal tract that share similar genetic risk factors. However, while fibrotic stricture of the intestine is a major characteristic of CD; it is rarely observed in UC. Deposition of collagen in the extracellular matrix contributes to the formation of fibrotic strictures in CD, but the underlying mechanisms are unknown. In the present study, we found that heat shock protein 47 (HSP47), a stress-response protein that acts as a molecular chaperone during the processing and secretion of collagen, expressed in the intestinal tissue from patients with CD. Serum HSP47 levels and anti-HSP47 antibody titers were significantly higher in patients with CD than in those with UC. Furthermore, anti-HSP47 antibody levels correlated significantly with fibrosis in CD. In addition, HSP47 inhibition significantly suppressed collagen production in fibroblasts in vitro. These findings suggest that HSP47 is a biomarker for differentiating fibrotic from non-fibrotic forms of CD. Additionally, we propose that HSP47 could be a potential target for treating fibrosis in patients with CD.


Asunto(s)
Enfermedad de Crohn , Proteínas del Choque Térmico HSP47 , Colágeno/metabolismo , Constricción Patológica/patología , Enfermedad de Crohn/genética , Enfermedad de Crohn/metabolismo , Enfermedad de Crohn/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis , Proteínas del Choque Térmico HSP47/genética , Proteínas del Choque Térmico HSP47/metabolismo , Humanos
11.
Reprod Fertil Dev ; 34(8): 619-632, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35296375

RESUMEN

Collagen, the most abundant extra-cellular matrix in oviducts and uteri, performs critical roles in pregnancies. We hypothesised that the locations and amounts of both denatured collagen and the collagen-specific molecular chaperone 47-kDa heat shock protein (HSP47) in the oviducts and uteri of old cows are different compared with those of young heifers because of repeated pregnancies. Since detecting damaged collagen in tissues is challenging, we developed a new method that uses a denatured collagen detection reagent. Then, we compared damaged collagen in the oviducts and uteri between post-pubertal growing nulliparous heifers (22.1±1.0months old) and old multiparous cows (143.1±15.6months old). Further, we evaluated the relationship between denatured collagen and HSP47 by combining this method with fluorescence immunohistochemistry. Picro-sirius red staining showed collagen in almost all parts of the oviducts and uteri. Expectedly, damaged collagen was increased in the oviducts and uteri of old cows. However, damaged collagen and HSP47 were not located in the same area in old cows. The number of fibroblasts increased, suggesting the presence of fibrosis in the oviducts and uteri of old cows. These organs of old cows showed higher HSP47 protein amounts than those of heifers. However, the uteri, but not oviducts, of old cows had lower HSP47 mRNA amounts than those of heifers. These findings revealed the specific location and amounts of denatured collagen and HSP47 in the oviducts and uteri of old cows compared with those of heifers.


Asunto(s)
Colágeno , Proteínas del Choque Térmico HSP47 , Envejecimiento , Animales , Bovinos , Colágeno/metabolismo , Femenino , Proteínas del Choque Térmico HSP47/genética , Proteínas del Choque Térmico HSP47/metabolismo , Chaperonas Moleculares , Oviductos/metabolismo , Embarazo , Útero/metabolismo
12.
J Therm Biol ; 104: 103185, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35180964

RESUMEN

Long-term temperature shifts associated with seasonal variability are common in temperate regions. However, these natural shifts could place significant strain on thermal stress responses of fishes when combined with mean increases in water temperatures predicted by climate change models. We examined the relationship between thermal acclimation, basal expression of heat shock protein (hsp) genes and the activation of the heat shock response (HSR) in lake whitefish (LWF; Coregonus clupeaformis), a cold water species of cultural and commercial significance. Juveniles were acclimated to either 6, 12, or 18°C water for several months prior to the quantification of hsp mRNA levels in the presence or absence of acute heat shock (HS). Acclimation to 18°C increased basal mRNA levels of hsp70 and hsp47, but not hsc70 or hsp90ß in gill, liver and white muscle, while 6°C acclimation had no effect on basal hsp transcription. Fish in all acclimation groups were capable of eliciting a robust HSR following acute HS, as indicated by the upregulation of hsp70 and hsp47. An increase of only 2°C above the 18°C acclimation temperature was required to trigger these transcriptional changes, suggesting that the HSR may be frequently initiated in LWF populations living at mildly elevated temperatures. Collectively, these expression profiles show that environmental temperature influences both basal hsp levels and the HSR in LWF, and indicate that these fish may have a greater physiological and ecological susceptibility to elevated temperatures than to cooler temperatures.


Asunto(s)
Proteínas del Choque Térmico HSP47/genética , Proteínas HSP70 de Choque Térmico/genética , Respuesta al Choque Térmico/genética , Salmonidae/genética , Aclimatación , Animales , Cambio Climático , Expresión Génica , Lagos , ARN Mensajero/genética , Temperatura , Regulación hacia Arriba/genética
13.
Cell Signal ; 91: 110241, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34998932

RESUMEN

The hyperglycemic microenvironment induced by diabetes mellitus aggravates the inflammatory response, in which the IRE1α signal transduction pathway of the unfolded protein response (UPR) participates. However, the mechanism by which hyperglycemia regulates the IRE1α signaling pathway and affects endoplasmic reticulum (ER) homeostasis in human gingival epithelium in periodontitis with diabetes mellitus remains unknown. Our current data provide evidence that diabetes mellitus causes a hyperinflammatory response in the gingival epithelium, which accelerates periodontal inflammation. Next, we assessed UPR-IRE1α signaling in periodontitis with diabetes mellitus by examining human clinical gingival epithelium samples from healthy subjects, subjects with periodontitis and subjects with periodontitis with diabetes mellitus and by in vitro challenge of human epithelial cells with a hyperglycemic microenvironment. The results showed that a hyperglycemic microenvironment inhibited the IRE1α/XBP1 axis, decreased the expression of a UPR target gene (GRP78), and ultimately impaired the UPR, causing ER stress to be prolonged or more severe in human gingival epithelium. Subsequently, RNA sequencing (RNA-seq) data was analyzed to investigate the expression of ER-related genes in human gingival epithelium. Experiments verified that the mechanism by which periodontitis is aggravated in individuals with diabetes mellitus may involve decreased SERPINH1 expression. Furthermore, experiments in SERPINH1-knockdown and SERPINH1-overexpression models established in vitro indicated that SERPINH1 might act as an activator of IRE1α, maintaining human gingival epithelium homeostasis and reducing proinflammatory cytokine expression by preventing prolonged ER stress induced by high-glucose conditions. In conclusion, regulation of the UPR transducer IRE1α by SERPINH1 alleviates periodontitis with diabetes mellitus by mitigating prolonged ER stress. This finding provides evidence for the further study of periodontitis with diabetes mellitus.


Asunto(s)
Diabetes Mellitus , Endorribonucleasas , Proteínas del Choque Térmico HSP47 , Periodontitis , Proteínas Serina-Treonina Quinasas , Estrés del Retículo Endoplásmico/fisiología , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Proteínas del Choque Térmico HSP47/genética , Proteínas del Choque Térmico HSP47/metabolismo , Humanos , Periodontitis/complicaciones , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Respuesta de Proteína Desplegada/fisiología
14.
Anticancer Drugs ; 33(3): 268-277, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34751174

RESUMEN

Lung cancer is one of the most lethal malignancies, with the highest number of cases and deaths. Non-small cell lung cancer (NSCLC) is the most ordinary type of pathology in lung cancer. Meanwhile, various researchers have reported that heat shock protein 47 (HSP47) plays a vital regulatory role in cancer. However, the role of HSP47 in NSCLC is not clear. Consequently, the current study set out to investigate the role of HSP47 in the pathogenesis of NSCLC. First, we evaluated the expression patterns of HSP47 in NSCLC cell lines related to human normal lung epithelial cells, and HSP47 was found to be highly expressed in NSCLC cell lines. In addition, inhibiting the expression of HSP47 brought about marked repression in cell proliferation, migration and invasion in PC-9 cells. On the contrary, cell proliferation, migration and invasion were all elevated after over-expression of HSP47. Mechanistical experimentation further illustrated that protein kinase B (AKT) signal was repressed after inhibition of HSP47, and the influence of sh-HSP47 on cell proliferation, migration and invasion was countered by epidermal growth factor. Lastly, in-vivo animal models demonstrated that inhibition of HSP47 repressed cell tumorigenesis and AKT signal. Collectively, our findings illustrated that HSP47 was highly expressed in NSCLC cell lines, whereas inhibition of HSP47 repressed cell migration and invasion by diminishing the AKT signal. Inhibition of HSP47 also exhibited strong therapeutic effects on NSCLC in vivo.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Proteínas del Choque Térmico HSP47/genética , Proteínas del Choque Térmico HSP47/metabolismo , Humanos , Neoplasias Pulmonares/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo
15.
Aesthet Surg J ; 42(1): 56-67, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34000047

RESUMEN

BACKGROUND: In addition to body contouring, there is anecdotal and clinical evidence of reduced laxity caused by skin tightening after cryolipolysis. However, it has not been established how cryolipolysis triggers dermal changes. OBJECTIVES: The aim of this study was to investigate the fundamental mechanisms behind clinically observed dermal changes by molecular and immunohistochemistry (IHC) analytical methods. METHODS: This feasibility study involved 7 subjects who received cryolipolysis treatment. Tissue samples were harvested from 3 days to 5 weeks after treatment. RNA-sequencing examined differential gene expression of major collagens. RNA in situ hybridization (RNA-ISH) investigated the distribution of 1 of the gene markers for collagen type I (COL1A1). IHC for procollagen type I, heat shock protein 47 (HSP47), transforming growth factor ß (TGF-ß), and tropoelastin was performed and quantified. RESULTS: Gene expression analysis highlighted a gradual upregulation of collagen mRNA genes. RNA-ISH confirmed upregulation of COL1A1 mRNA and showed a homogeneous distribution through the dermis. IHC showed increases in protein expression. Quantification revealed a 3.62-fold increase of procollagen type I (P < 0.0071), a 2.91-fold increase of TGF-ß (P < 0.041), a 1.54-fold increase of HSP47 (P < 0.007), and a 1.57-fold increase of tropoelastin (P < 0.39) compared with untreated areas. CONCLUSIONS: This study revealed significant induction of molecular and protein markers of type I collagen, which supports neocollagenesis and may play an essential role in clinically relevant skin improvement. A dermal remodeling process driven by increased TGF-ß and higher expression of HSP47 was observed. Overall, these data provide the first evidence of dermal remodeling and clarify the mechanism by which cryolipolysis may induce skin improvement.


Asunto(s)
Colágeno , Proteínas del Choque Térmico HSP47 , Colágeno Tipo I , Proteínas del Choque Térmico HSP47/genética , Humanos , Piel , Factor de Crecimiento Transformador beta/genética
16.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34768968

RESUMEN

Tissue remodeling contributes to ongoing inflammation and refractoriness of chronic rhinosinusitis (CRS). During this process, epithelial-mesenchymal transition (EMT) plays an important role in dysregulated remodeling and both microRNA (miR)-29b and heat shock protein 47 (HSP47) may be engaged in the pathophysiology of CRS. This study aimed to determine the role of miR-29b and HSP47 in modulating transforming growth factor (TGF)-ß1-induced EMT and migration in airway epithelial cells. Expression levels of miR-29b, HSP47, E-cadherin, α-smooth muscle actin (α-SMA), vimentin and fibronectin were assessed through real-time PCR, Western blotting, and immunofluorescence staining. Small interfering RNA (siRNA) targeted against miR-29b and HSP47 were transfected to regulate the expression of EMT-related markers. Cell migration was evaluated with wound scratch and transwell migration assay. miR-29b mimic significantly inhibited the expression of HSP47 and TGF-ß1-induced EMT-related markers in A549 cells. However, the miR-29b inhibitor more greatly induced the expression of them. HSP47 knockout suppressed TGF-ß1-induced EMT marker levels. Functional studies indicated that TGF-ß1-induced EMT was regulated by miR-29b and HSP47 in A549 cells. These findings were further verified in primary nasal epithelial cells. miR-29b modulated TGF-ß1-induced EMT-related markers and migration via HSP47 expression modulation in A549 and primary nasal epithelial cells. These results suggested the importance of miR-29b and HSP47 in pathologic tissue remodeling progression in CRS.


Asunto(s)
Transición Epitelial-Mesenquimal/genética , Transición Epitelial-Mesenquimal/fisiología , Proteínas del Choque Térmico HSP47/antagonistas & inhibidores , Proteínas del Choque Térmico HSP47/genética , Factor de Crecimiento Transformador beta1/metabolismo , Células A549 , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Movimiento Celular/fisiología , Células Cultivadas , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , MicroARNs/metabolismo , Mucosa Nasal/efectos de los fármacos , Mucosa Nasal/metabolismo , Mucosa Nasal/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Rinitis/genética , Rinitis/metabolismo , Sinusitis/genética , Sinusitis/metabolismo , Sinusitis/patología , Factor de Crecimiento Transformador beta1/administración & dosificación , Factor de Crecimiento Transformador beta1/genética
17.
Cancer Sci ; 112(7): 2803-2820, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34109710

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the most chemoresistant cancers. An understanding of the molecular mechanism by which PDAC cells have a high chemoresistant potential is important for improvement of the poor prognosis of patients with PDAC. Here we show for the first time that disruption of heat shock protein 47 (HSP47) enhances the efficacy of the therapeutic agent gemcitabine for PDAC cells and that the efficacy is suppressed by reconstituting HSP47 expression. HSP47 interacts with calreticulin (CALR) and the unfolded protein response transducer IRE1α in PDAC cells. Ablation of HSP47 promotes both the interaction of CALR with sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase 2 and interaction of IRE1α with inositol 1,4,5-triphosphate receptor, which generates a condition in which an increase in intracellular Ca2+ level is prone to be induced by oxidative stimuli. Disruption of HSP47 enhances NADPH oxidase-induced generation of intracellular reactive oxygen species (ROS) and subsequent increase in intracellular Ca2+ level in PDAC cells after treatment with gemcitabine, resulting in the death of PDAC cells by activation of the Ca2+ /caspases axis. Ablation of HSP47 promotes gemcitabine-induced suppression of tumor growth in PDAC cell-bearing mice. Overall, these results indicated that HSP47 confers chemoresistance on PDAC cells and suggested that disruption of HSP47 may improve the efficacy of chemotherapy for patients with PDAC.


Asunto(s)
Calreticulina/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Resistencia a Antineoplásicos , Endorribonucleasas/metabolismo , Proteínas del Choque Térmico HSP47/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Antimetabolitos Antineoplásicos/uso terapéutico , Calcio/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Caspasas/metabolismo , Línea Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapéutico , Técnicas de Inactivación de Genes , Silenciador del Gen , Proteínas del Choque Térmico HSP47/genética , Xenoinjertos , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Ratones , NADPH Oxidasas/metabolismo , Trasplante de Neoplasias , Neoplasias Pancreáticas/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Respuesta de Proteína Desplegada , Gemcitabina
18.
Annu Rev Biochem ; 90: 631-658, 2021 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-33823651

RESUMEN

Collagen is the most abundant protein in mammals. A unique feature of collagen is its triple-helical structure formed by the Gly-Xaa-Yaa repeats. Three single chains of procollagen make a trimer, and the triple-helical structure is then folded in the endoplasmic reticulum (ER). This unique structure is essential for collagen's functions in vivo, including imparting bone strength, allowing signal transduction, and forming basement membranes. The triple-helical structure of procollagen is stabilized by posttranslational modifications and intermolecular interactions, but collagen is labile even at normal body temperature. Heat shock protein 47 (Hsp47) is a collagen-specific molecular chaperone residing in the ER that plays a pivotal role in collagen biosynthesis and quality control of procollagen in the ER. Mutations that affect the triple-helical structure or result in loss of Hsp47 activity cause the destabilization of procollagen, which is then degraded by autophagy. In this review, we present the current state of the field regarding quality control of procollagen.


Asunto(s)
Colágeno/química , Fibrosis/metabolismo , Proteínas del Choque Térmico HSP47/metabolismo , Procolágeno/química , Procolágeno/metabolismo , Animales , Colágeno/metabolismo , Retículo Endoplásmico/metabolismo , Fibrosis/genética , Proteínas del Choque Térmico HSP47/química , Proteínas del Choque Térmico HSP47/genética , Humanos , Hidroxilación , Chaperonas Moleculares/metabolismo , Prolina/química , Prolina/metabolismo , Conformación Proteica , Pliegue de Proteína , Procesamiento Proteico-Postraduccional
19.
Elife ; 102021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33661096

RESUMEN

Aging, obesity, hypertension, and physical inactivity are major risk factors for endothelial dysfunction and cardiovascular disease (CVD). We applied fluorescence-activated cell sorting (FACS), RNA sequencing, and bioinformatic methods to investigate the common effects of CVD risk factors in mouse cardiac endothelial cells (ECs). Aging, obesity, and pressure overload all upregulated pathways related to TGF-ß signaling and mesenchymal gene expression, inflammation, vascular permeability, oxidative stress, collagen synthesis, and cellular senescence, whereas exercise training attenuated most of the same pathways. We identified collagen chaperone Serpinh1 (also called as Hsp47) to be significantly increased by aging and obesity and repressed by exercise training. Mechanistic studies demonstrated that increased SERPINH1 in human ECs induced mesenchymal properties, while its silencing inhibited collagen deposition. Our data demonstrate that CVD risk factors significantly remodel the transcriptomic landscape of cardiac ECs inducing inflammatory, senescence, and mesenchymal features. SERPINH1 was identified as a potential therapeutic target in ECs.


Cardiovascular diseases are the number one cause of death in the western world. Endothelial cells that line the blood vessels of the heart play a central role in the development of these diseases. In addition to helping transport blood, these cells support the normal running of the heart, and help it to grow and regenerate. Over time as the body ages and experiences stress, endothelial cells start to deteriorate. This can cause the cells to undergo senescence and stop dividing, and lay down scar-like tissue via a process called fibrosis. As a result, the blood vessels start to stiffen and become less susceptible to repair. Ageing, obesity, high blood pressure, and inactivity all increase the risk of developing cardiovascular diseases, whereas regular exercise has a protective effect. But it was unclear how these different factors affect endothelial cells. To investigate this, Hemanthakumar et al. compared the gene activity of different sets of mice: old vs young, obese vs lean, heart problems vs healthy, and fit vs sedentary. All these risk factors ­ age, weight, inactivity and heart defects ­ caused the mice's endothelial cells to activate mechanisms that lead to stress, senescence and fibrosis. Whereas exercise training had the opposite effect, and turned off the same genes and pathways. All of the at-risk groups also had high levels of a gene called SerpinH1, which helps produce tissue fiber and collagen. Experiments increasing the levels of SerpinH1 in human endothelial cells grown in the laboratory recreated the effects seen in mice, and switched on markers of stress, senescence and fibrosis. According to the World Health Organization, cardiovascular disease now accounts for 10% of the disease burden worldwide. Revealing the affects it has on gene activity could help identify new targets for drug development, such as SerpinH1. Understanding the molecular effects of exercise on blood vessels could also aid in the design of treatments that mimic exercise. This could help people who are unable to follow training programs to reduce their risk of cardiovascular disease.


Asunto(s)
Senescencia Celular , Células Endoteliales/fisiología , Proteínas del Choque Térmico HSP47/genética , Corazón/fisiopatología , Mesodermo/fisiología , Animales , Enfermedades Cardiovasculares/fisiopatología , Modelos Animales de Enfermedad , Femenino , Proteínas del Choque Térmico HSP47/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Factores de Riesgo
20.
PLoS Genet ; 17(2): e1009339, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33524049

RESUMEN

Heat shock protein 47 (HSP47), encoded by the SERPINH1 gene, is a molecular chaperone essential for correct folding of collagens. We report a homozygous p.(R222S) substitution in HSP47 in a child with severe osteogenesis imperfecta leading to early demise. p.R222 is a highly conserved residue located within the collagen interacting surface of HSP47. Binding assays show a significantly reduced affinity of HSP47-R222S for type I collagen. This altered interaction leads to posttranslational overmodification of type I procollagen produced by dermal fibroblasts, with increased glycosylation and/or hydroxylation of lysine and proline residues as shown by mass spectrometry. Since we also observed a normal intracellular folding and secretion rate of type I procollagen, this overmodification cannot be explained by prolonged exposure of the procollagen molecules to the modifying hydroxyl- and glycosyltransferases, as is commonly observed in other types of OI. We found significant upregulation of several molecular chaperones and enzymes involved in procollagen modification and folding on Western blot and RT-qPCR. In addition, we showed that an imbalance in binding of HSP47-R222S to unfolded type I collagen chains in a gelatin sepharose pulldown assay results in increased binding of other chaperones and modifying enzymes. The elevated expression and binding of this molecular ensemble to type I procollagen suggests a compensatory mechanism for the aberrant binding of HSP47-R222S, eventually leading to overmodification of type I procollagen chains. Together, these results illustrate the importance of HSP47 for proper posttranslational modification and provide insights into the molecular pathomechanisms of the p.(R222S) alteration in HSP47, which leads to a severe OI phenotype.


Asunto(s)
Colágeno Tipo I/genética , Proteínas del Choque Térmico HSP47/genética , Mutación Missense , Osteogénesis Imperfecta/genética , Secuencia de Aminoácidos , Células Cultivadas , Preescolar , Colágeno Tipo I/metabolismo , Resultado Fatal , Femenino , Proteínas del Choque Térmico HSP47/química , Proteínas del Choque Térmico HSP47/metabolismo , Humanos , Lactante , Recién Nacido , Modelos Moleculares , Osteogénesis Imperfecta/metabolismo , Unión Proteica , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...